Received: November 7, 1984; accepted: February 12, 1985

STUDIES IN AZIDE CHEMISTRY. PART 12. ONE-POT CONVERSION OF 4-AZIDOTETRAFLUOROPYRIDINE TO 1,3,4-TRIFLUORO-7,9-DIMETHYL-11H -PYRIDO[4,3-c]BENZO[1,2]DIAZEPINE

RONALD E. BANKS * and ISMAIL M. MADANY

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (U.K.)

SUMMARY

Thermolysis of 4-azidotetrafluoropyridine in the presence of an excess of mesidine at 170 °C yields tetrafluoro-4-(2,4,6-trimethylphenylazo)-pyridine, which undergoes intramolecular dehydrofluorination in situ to provide 1,3,4-trifluoro-7,9-dimethyl-11H-pyrido[4,3-c]benzo[1,2]diazepine.

INTRODUCTION

The discovery described here stemmed from utilisation of the well -established thermal behaviour of 4-azidotetrafluoropyridine [1] in a search for high-temperature nitrene traps suitable for probing the mechanism of the pyrolytic rearrangement of perfluoro-(6-azido-2,6-dimethyl-1-azacyclohexene) [2]. As explained recently [3], it was made shortly after Alty [4] had

$$N = N$$
 $N = N$
 N

^{*} To whom enquiries should be addressed.

stumbled across the acetic acid-catalysed conversion of tetrafluoro-4-(2,4,6-trimethylphenylazo)pyridine (1) to 1,3,4-trifluoro-7,9-dimethyl- $11\underline{H}$ -pyrido[4,3- \underline{c}]benzo[1,2]diazepine (2) and hence deserves attention as an unusual case of carbon-copy serendipity in the same laboratory.

RESULTS AND DISCUSSION

Aniline [5], p-fluoroaniline [5], or pentafluoroaniline [5,6,7] have been used successfully to provide circumstantial evidence for nitrenic decomposition of azidopentafluorobenzene, perfluoro-4-azidotoluene, 4-azidotetrafluoropyridine and 4-azido-3-chlorotrifluoropyridine at temperatures in the range 130-165 °C. Pentafluoroaniline was the 'cleanest', most efficient (yield-wise) trap, and importantly no secondary reactions involving nucleophilic displacement of fluorine from pentafluorophenylazo-compounds formed initially via nitrene insertion into N-H bonds was detected. Attention was turned to mesidine (2-amino-1,3,5-trimethylbenzene, b.p. 233 °C) as a trap for tetrafluoro-4-pyridylnitrene after it had been discovered that (i) this arylamine does not readily displace fluorine from pentafluoropyridine, and (ii) the corresponding hydrocarbon, mesitylene (b.p. 165 °C), is a good trap for the nitrene, insertion into ring C-H occurring to the exclusion of attack on the methyl C-H bonds [8].

Thus, 4-azidotetrafluoropyridine (2.0 g, 10.4 mmol) and freshly-distilled mesidine (14.0 g, 104 mmol) were heated together at 175 °C under an atomosphere of nitrogen for 5 hours. The product was poured into water (ca. 100 cm³) and organic material was extracted with diethyl ether (3 x 200 cm³); the ether extracts were then concentrated (to ca.100 cm³) and, after being shaken with 2M-hydrochloric acid (2 x 100 cm³), washed with water, dried overnight (MgSO4), and subjected to dry-column flash chromatography on silica (Merck GF254, Art. 7730) eluted with dichloromethane-petroleum ether (b.p. 40-60 °C) (3:2 v/v). This provided tetrafluoro-4-(2,4,6-trimethylphenylazo)pyridine (1) (0.8 g, 2.7 mmol, 26%), 1,3,4-trifluoro-7,9-dimethyl-11H-pyrido[4,3-c]benzo[1,2]diazepine (2) (0.3 g, 1.1 mmol, 10%), and 4-aminotetrafluoropyridine (4% yield), each of which was identified spectroscopically, using authentic samples for comparison. HPLC Analysis of the crude reaction product revealed the presence of numerous compounds, each in small amount. When the

REFERENCES

- 1 R.E. Banks and G.R. Sparkes, J Chem. Soc., Perkin Trans. I, (1972) 2964.
- M. Abed-Rabboh, R.E. Banks, and B. Beagley, J. Chem. Soc., Chem. Commun., (1983) 1117.
- 3 R.E. Banks, Paper F.12 read at the RSC 1984 Autumn Meeting, University of Hull, U.K.
- 4 A.C. Alty, R.E. Banks, B.R. Fishwick, R.G. Pritchard, and A.R. Thompson., J Chem. Soc., Chem. Commun., (1984) 832.
- 5 R.E. Banks and A. Prakash, J. Chem. Soc., Perkin Trans, I, (1974) 1365.
- 6 R.E. Banks and T.J. Noakes, J. Chem. Soc., Perkin Trans. I, (1975)
 1419.
- 7 R.E. Banks, A. Prakash, and N.D. Venayak, J. Fluorine Chem., <u>16</u> (1980) 325.
- 8 R.E. Banks and I.M. Madany, paper in preparation.
- 9 A.C. Alty, R.E. Banks, B.R. Fishwick, and A.R. Thompson, J. Fluorine Chem., 26 (1984) 263.